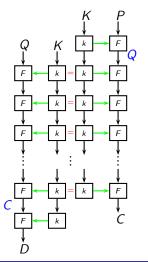
New Slide Attacks on Almost Self-Similar Ciphers


<u>Orr Dunkelman</u>, Nathan Keller, Noam Lasry, Adi Shamir

May 21th, 2019

Slide Attacks [BW99]

- Presented by Biryukov and Wagner in 1999
- Can be applied to ciphers with the same keyed permutation
- Independent of the number of rounds of the cipher

Slide

Slide Attacks [BW99] (cont.)

Slid pair satisfies

$$\begin{cases} Q = f_k(P), \\ D = f_k(C), \end{cases}$$

(1)

- Slide attacks:
 - Find such a slid pair,
 - Use slid pair to extract key.

Slide

Extensions and Generalizations

- Slide with twist [BW00]
- Advanced slide [BW00]
- Chains [F01]
- Slidex [DKS12]
- Reflection [K08]
- Quantum [B+18]

Applications

- ▶ 1K-DES, 2K-DES, 4K-DES ([BW99,BW00])
- 3K-DES ([B+17])
- 1K-AES ([B+17])
- ► KeeLoq ([I+08,C+08])

Slide

FF3 ([DV17,HMT19])

Basic Assumptions

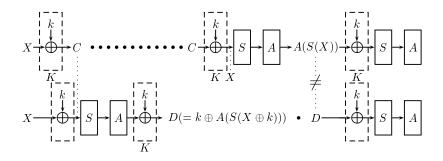
1 All round functions are the same

Basic Assumptions

- 1 All round functions are the same
- 2 Because of 1, it is possible to iterate and generate more slid pairs

Slide

Basic Assumptions


- All round functions are the same
- 2 Because of 1, it is possible to iterate and generate more slid pairs

Problem: in AES the last round is different!

Slide

Last Round Function \Rightarrow No Slid Chains

Overcoming the Last Round

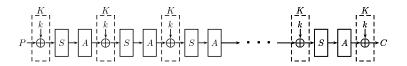
Overcoming the Last Round

Introducing **4** new slide techniques:

Overcoming the Last Round

Introducing **4** new slide techniques:

- Slid Sets
- Hypercube of slid pairs
- Suggestive plaintext structures
- Substitution slide



Slid Sets

• Two sets of λ -structures $\{\mathcal{P}\}$ and $\{\mathcal{Q}\}$ such that

 $f_k(\{\mathcal{P}\}) = \{\mathcal{Q}\}$

- Cool detection techniques!
- Can be used to attack 2K-AES with complexity 2⁶⁸
- General 2-KSA $2^{(n+s)/2}$
- Can be used to attack 1K-AES with secret S-boxes with complexity 2^{70.3}

Results

Cipher	Technique	Complexity (general)		AES-like	
		Data/Memory	Time	Data/Memory	Time
Known S-Boxes					
1-KSAf	Slide [B+17]	2 ^{n/2} (KP)	2 ^{n/2}	2 ⁶⁴ (KP)	2 ⁶⁴
1-KSAt	Suggestive str.	$3 \cdot 2^{n/2}$ (CP)	$4 \cdot 2^{n/2}$	2 ^{65.6} (CP)	2 ⁶⁶
1-KSAt	Sub. slide	$2^{n/2}$ (KP)	2 ^{3n/4}	2 ⁶⁴ (KP)	2 ⁹⁶
2-KSAf	Slid sets	$2^{(n+s)/2+1}$ (CP)	$2^{(n+s)/2+1}$	2 ⁶⁹ (CP)	2 ⁶⁹
2-KSAf	Slide + Key Guessing	$(n/s)2^{n/2}$ (CP)	$2^{n/2+s}$	2 ⁶⁸ (CP)	272
2-KSAtpi †	Slid sets	$2^{(n+m)/2+1}$ (CP)	$\max\{2^{(n+m)/2+1}, 2^{2m}\}$	2 ⁷⁸ (CP)	278
3-KSAfi †	Slid sets	$2^{(n+m)/2+1}$ (CP)	$\max\{2^{(n+m)/2+1}, 2^{2m}\}$	2 ⁸¹ (CP)	2 ⁸¹
Secret S-Boxes					
1-KSAf	Slid sets	$1.17\sqrt{s}2^{(n+s)/2}$ (CP)	$1.17\sqrt{s}2^{(n+s)/2}$	2 ^{70.3} (CP)	270.3
1-KSAf	Hypercube	$\sqrt{s}2^{n/2+s(s+3)/4+1}$ (CP)	$\sqrt{s}2^{n/2+s(s+3)/4+1}$	2 ⁸⁸ (CP)	2 ⁸⁸

KP – Known Plaintext; CP – Chosen Plaintext; For AES-like n = 128, s = 8

 † – this version has incomplete diffusion layer, *m* denotes the "word" size of the linear operation.

 ‡ – the memory complexity of this attack is 2^{47} .

Slide

Thank you for your Attention!

https://eprint.iacr.org/2019/059

A Formal Complaint: Wrongful Rejection from Rump Session

Orr Dunkelman

May 21th, 2019

 Eran Lambooij and me wanted to give another rump session presentation

- Eran Lambooij and me wanted to give another rump session presentation
- As you can see, it is not in the schedule

- Eran Lambooij and me wanted to give another rump session presentation
- As you can see, it is not in the schedule
- The fact that we missed the deadline by 13 hours and 27 minutes seems to be of little relevance!

(Rump) Session Hijacking Attack

New attack against timing constraints!

(Rump) Session Hijacking Attack

- New attack against timing constraints!
- CaML + (rump session talk) MR + Time-Travel attack

(Rump) Session Hijacking Attack

- New attack against timing constraints!
- CaML + (rump session talk) MR + Time-Travel attack
- Also works in the "wrong time zone" model

Thank you for your Support!

A Practical Cryptanalysis Competition A Cycling Approach

Orr Dunkelman and Eran Lambooij

Eurocrypt, Rumpsession, 2019

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Blockchain

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

BlockKette

Free Drinks

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

BlockKette

Competitions!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Freie Getränke

We present

The practical LWC competition

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 二臣 - のへで

Yellow

Most broken ciphers.

(ロ)、(型)、(E)、(E)、(E)、(O)()

Most points.

▲口 → ▲圖 → ▲ 臣 → ▲ 臣 → □ 臣 □

Polka dot

Highest broken rounds.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

What can you do?

Go to the competition website: https://cryptanex.hideinplainsight.io/lwc/

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Compute key
- Celebrate
- Submitters you can help us (contact Eran)